Selective stimulation of G-6-Pase catalytic subunit but not G-6-P transporter gene expression by glucagon in vivo and cAMP in situ.

نویسندگان

  • Lauri A Hornbuckle
  • Carrie A Everett
  • Cyrus C Martin
  • Stephanie S Gustavson
  • Christina A Svitek
  • James K Oeser
  • Doss W Neal
  • Alan D Cherrington
  • Richard M O'Brien
چکیده

We recently compared the regulation of glucose-6-phosphatase (G-6-Pase) catalytic subunit and glucose 6-phosphate (G-6-P) transporter gene expression by insulin in conscious dogs in vivo (Hornbuckle LA, Edgerton DS, Ayala JE, Svitek CA, Neal DW, Cardin S, Cherrington AD, and O'Brien RM. Am J Physiol Endocrinol Metab 281: E713-E725, 2001). In pancreatic-clamped, euglycemic conscious dogs, a 5-h period of hypoinsulinemia led to a marked increase in hepatic G-6-Pase catalytic subunit mRNA; however, G-6-P transporter mRNA was unchanged. Here, we demonstrate, again using pancreatic-clamped, conscious dogs, that glucagon is a candidate for the factor responsible for this selective induction. Thus glucagon stimulated G-6-Pase catalytic subunit but not G-6-P transporter gene expression in vivo. Furthermore, cAMP stimulated endogenous G-6-Pase catalytic subunit gene expression in HepG2 cells but had no effect on G-6-P transporter gene expression. The cAMP response element (CRE) that mediates this induction was identified through transient transfection of HepG2 cells with G-6-Pase catalytic subunit-chloramphenicol acetyltransferase fusion genes. Gel retardation assays demonstrate that this CRE binds several transcription factors including CRE-binding protein and CCAAT enhancer-binding protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective tonic inhibition of G-6-Pase catalytic subunit, but not G-6-P transporter, gene expression by insulin in vivo.

The regulation of glucose-6-phosphatase (G-6-Pase) catalytic subunit and glucose 6-phosphate (G-6-P) transporter gene expression by insulin in conscious dogs in vivo and in tissue culture cells in situ were compared. In pancreatic-clamped, euglycemic conscious dogs, a 5-h period of hypoinsulinemia led to a marked increase in hepatic G-6-Pase catalytic subunit mRNA; however, G-6-P transporter mR...

متن کامل

The promoter for the gene encoding the catalytic subunit of rat glucose-6-phosphatase contains two distinct glucose-responsive regions.

Glucose homeostasis requires the proper expression and regulation of the catalytic subunit of glucose-6-phosphatase (G-6-Pase), which hydrolyzes glucose 6-phosphate to glucose in glucose-producing tissues. Glucose induces the expression of G-6-Pase at the transcriptional and posttranscriptional levels by unknown mechanisms. To better understand this metabolic regulation, we mapped the cis-regul...

متن کامل

Adenovirus-mediated expression of the catalytic subunit of glucose-6-phosphatase in INS-1 cells. Effects on glucose cycling, glucose usage, and insulin secretion.

Glucose-6-phosphatase (Glu-6-Pase) catalyzes the terminal step of gluconeogenesis, the conversion of glucose 6-phosphate (Glu-6-P) to free glucose. This enzyme activity is thought to be conferred by a complex of proteins residing in the endoplasmic reticulum (ER), including a Glu-6-P translocase that transports Glu-6-P into the lumen of the ER, a phosphohydrolase catalytic subunit residing in t...

متن کامل

Novel concepts in insulin regulation of hepatic gluconeogenesis.

The regulation of hepatic gluconeogenesis is an important process in the adjustment of the blood glucose level, and pathological changes in the glucose production of the liver are a central characteristic in type 2 diabetes. The pharmacological intervention in signaling events that regulate the expression of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and the catalyt...

متن کامل

Diets enriched in sucrose or fat increase gluconeogenesis and G-6-Pase but not basal glucose production in rats.

High-fat (HFD) and high-sucrose diets (HSD) reduce insulin suppression of glucose production in vivo, increase the capacity for gluconeogenesis in vitro, and increase glucose-6-phosphatase (G-6-Pase) activity in whole cell homogenates. The present study examined the effects of HSD and HFD on in vivo gluconeogenesis, the catalytic and glucose-6-phosphate translocase subunits of G-6-Pase, glucoki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 286 5  شماره 

صفحات  -

تاریخ انتشار 2004